拉格朗日插值

定义

Ln(x)=i=0nli(x)f(xi)其中li(x)=0jn,ijxxjxixjL_n(x)=\sum_{i=0}^{n}l_i(x)f(x_i) \\ 其中l_i(x)=\prod_{0\le j \le n,i\ne j }{\frac{x-x_j}{x_i-x_j}}

误差

Ln(x)L_n(x)[a,b][a,b]上过{(xi,f(xi)),i=0,1...,n}\{(x_i,f(x_i)),i=0,1...,n\}nn次插值多项式,xi[a,b],xix_i\in[a,b],x_i互不相同,当fCn+1[a,b]f\in C^{n+1}[a,b]时,误差

Rn(x)=f(n+1)(ξ)(n+1)!(xx0)(xx1)...(xxn),其中ξ[a,b]R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n),其中\xi\in[a,b]

牛顿插值

待更新